Frame-Rate Spatial Referencing Based on Invariant Indexing and Alignment with Application to Online Retinal Image Registration
نویسندگان
چکیده
This paper describes an algorithm to continually and accurately estimate the absolute location of a diagnostic or surgical tool (such as a laser) pointed at the human retina, from a series of image frames. We treat the problem as a registration problem, using diagnostic images to build a spatial map of the retina and then registering each on-line against this map. Since the image location where the laser strikes the retina is easily found, this registration determines the position of the laser in the global coordinate system defined by the spatial map. For each on-line image, the algorithm computes similarity invariants, locally valid despite the curved nature of the retina, from constellations of vascular landmarks. These are detected using a high-speed algorithm that iteratively traces the blood vessel structure. Invariant indexing establishes initial correspondences between landmarks from the on-line image and landmarks stored in the spatial map. Robust alignment and verification steps extend the similarity transformation computed from these initial correspondences to a global, high-order transformation. In initial experimentation, the method has achieved 100% success on 1024× 1024 retina images. With a version of the tracing algorithm optimized for speed on 512× 512 images, the computation time is only 51 milliseconds per image on a 900MHz Pentium III processor and a 97% success rate is achieved. The median registration error in either case is about 1 pixel.
منابع مشابه
DPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملCovariance-driven retinal image registration initialized from small sets of landmark correspondences
An automatic retinal image registration algorithm would be an important tool for detecting visible changes in the retina caused by the progress of a disease or by the impact of a treatment. Developing such an algorithm is difficult, especially for feature-poor images of diseased eyes. In this paper, a new retinal image registration algorithm is described that bootstraps an estimate of the param...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003